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l. Irtroduction

The high speed flow of a compressible fluid over a& blunt body at
mocerate to low Reynolds numbers heas attracted considerable attention due to
its applicaticn to re-entry problems. The flow regime where the Reynolds
nunter is high enough for boundary-layer theory to apply can be handled withe-
out too much diffieunlty. This is done by obtaining a numerical solution to
the iInviscicé flow equations descridbing the flow outside the boundary-layer
ené using this solution to obtain the pressure distribution on the body
surface. One can then use this pressure distribution to solve the boundary-
layer equations by one of severel methods available such as those of Flligge-Lotz
and Blottner (1962), Smith and Clutter (1963), and Davis arnd Flligge-Lotz (1964)
(The last method is actually a modification of the method of Fllgge-lotz and
Blottner.) Boundary-layer calculations have been made for several flow cases
oy using the above methods. In particular one is referred to the h ypersonic
blunt body solutions by Davis and Fligge-lotz (196k).

As one encounters lower Reynolds nunbers one must contend with the
fact that one cannot expect the first-order boundary-layer equations to give
reasonable results. This can be corrected at the high Reynalds number end by
solving the so-called second-order boundary-layer equations. This has also
been done by Davis and Fldgge-~lotz (196Lk). This, however, becomes guite cumber-
sozme and requires a considerable amount of computing time. If one needs to go
to third-order boundary-layer theory to get sufficient accuracy one would find
the situation even more difficult. One of the difficulties encountered is the
problem of calculating the flow due to displacement thickness. This requires a
direct solution for the inviscid flow past a body consisting of the original
body thickened by the displacement thickness. Davis and Fllgge-lotz (1964)
approximated this flow by shifting and expandi;g the original body surface.
Hoffman (1564) has approached the problem in a more exact manner by using the
zethod of integral relations to calculate the flow field. Neither method is
entirely satisfactory, the first because of inaccuracy and the second because of
computetionzl difficulties, Another difficulty with higher order boundary-layer
theory is the Tact that at moderate Reynolds numbers the boundary-layer begins to
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spread into the entire shock layer preventing one from clearly distinguishing
separate Inviscid and viscous regions [see Kao(196L4)] and therefore limiting

toundary-layer theory to higher Reynolds numbers than one night expect.

For the reasons above one is lead to the idea of trying to solve
the complete Navier-Stokes eguations or a simplification to them which is
valid in the whole shock-layer. Davis and Flligge-Lotz (196L4) have suggested
such a simplification and a method for solving their simplified equations., The
purpose of this paper is to present the results of an investigation which uses
the method suggested by Davis and Flligge-lotz (196L4).

For simplicity we will consider the constant density flow past a
sphere. There are several reasons for this. First, an exact inviscid solution
due to Lighthill (1957) is available for comparison for the inviscid part of the
Zlow field in the high Reynolds number flows, Second, the constant density model
will retain &1l of the essential features for the numerical procedure for the
solution of the flow of the more complicated compressible fluid. Once the
constant densiiy case has been solved the extension to the compressible case
is direct with no complications arising due to theory. For simplicity we will
also assume that the shock is a discontinuity even in the low Reynolds number

cases. This is again a simplificaticn which can be removed [see Cheng (1963)].

In order to start the numerical procedure one must have a solution which
is valid near the stegnation point. The ideal method for finding this solution
is to use the series truncation method developed by Van Dyke and co-workers. In
particular the truncated series method used by Xao (1964) in the compressible
viscous flow past a sphere is useful. The truncated series results should be
particularly good since the form of the truncation is taken to be the same as the
form of the inviscid constant density solution . These results are also used-for

comparison with the numerical finite -~ difference results.

For the purpose of comparison with the high Reynolds number cases

. the first-order boundary-layer equations are also solved for the constant density

flow. In this case Lighthill's (1957) comnstant density solution is used for




-l

deterzining the surface pressure distribution.

2. Formulation of the problen

2.1 Co-ordirate svstenm

Consider laminar hypersconic flow of a viscous fluid past the sphere
of radius a¥ shown in figure 1, TFor simplicity we will assume that the free
stream Mach number M is infinite and that the density pg and fiscosity

u; in the flow field behind the shock are constants given by their values
irmmediately behind the normal shock. The velocity components u* and v¥ are
tanzent and norzmel to the body surface respectively. The coordinate n¥ is
measured norzal 1o the body surface and the angle ¢ is meeasured from the

stegnation-point to the radius vector.

2.2 Dimensionless ocuantities

For simplicity the folloving dirensionless quantities are introduced.
These quantities ere of order one in the boundary-layer region near the sur-

face of the sphere,

n¥*

X = =—¢ , boundary-layer normal coordinate (2.1a)
a = Z: =1, nose radius (2.1v)
*
u = ﬁ%— » the velocity component parallel to the body
' «©
surface ) o (2.1e)
P ¥
P = > , the pressure (2.14)
pEUF ~
pS .
pg = ¥ = 6 , the density behind the shock for M, = = (2.1e)
(%) VRe 3u ' ,
(1) = ——% S = 3y » shear stress at the body surface (2.1r)
v 2

B
pWL@
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, shock Reynolds number (2.18)

The cuantity T used in the above relztions is defined by

(=]

(2.1h)

7
(1]

2.3 Assumntions

We will assume thet the constent density model is applicable. This
will be true near the stegnation-point for a nearly insulsted body. VWe will
Turiher assume that the no-slip conditions epply at the body surface. These
conéitions can be modified to take care of slip with little &ifficulty [see Street
(195G)]. We will a2lso assume that the bow shock wave is a discontinuity even
though at low Reynolds numbers this is not true. This restriction cen be
removed in a manner similar to that of Cheng (1963). All of these restrictions
are imposed to allow attention to be focused on the numerical procedure. The
restrictions of coastant density, no-slip etc., can be removed with little
hange in the method of solution. These more general celculations ﬁhich confornm

zore closely with the real situetion are preserntly being made,

The last essumption is thal the bow shock wave angle is the same as
the body angle for a given value of ¢ . This is similar to assuning a spherical
shock except that the distance between the body and the shock 1s allowed to grow.
Since the shock is spherical in the inviscid case this assumption is very good
for high Reynolds rumbers. On the basis of the numerical calculations we will
see thet this is not a bad assumption even at -low Reynolds numbers. Ve have
tried to build up the shock wave in the viscous case as the computationsproceed
dovnstrean, however this has lead to instabilities in thke numerical procedufe.
This point is presently under study and an attempt is being made to impose the
shock conditions in such a way that instabilities do not occur. This difficulty
must be overcome before other body shapes are considered along with a compressible

Tluid.




Assu:ptions sizmilar to soze of those zade above (i.e. constant density
etc.) have been made by Probstein and Kexp (1660), Oguchi (1958), and Hoshizeki
(1959) in consicdering the viscous flow past o sphere.

2,4 Governing Zcuations ané Boundarv Conditions

Introducing the dimensionless cuantities (2.l1a) - (2.1g) into the
Tull Navier-Stokes equations and neglecting 2ll terms of higher order in
feynclds number than seconé thet will appear in both the boundary-layer region
near the body and a&lso in the iaviscid region outside this layer we cen obtain
a sct of equations similer to those given by Davis and Fllgge-Lotz (196L4). [See |
their zaper for a discussion of this approximation. ) Upon making the constant i

ensity approximeation we obtain the fol
ecuations and boundary conéitiozns.
Continuity*

[{(l+1N)sin¢}u]¢+[(1+1N){(l+TN) sin¢}v]N—

¢-Momentun

uwu P

’ 6 + va 3 v ) é - \l’

Pt Toex “x 7 T+n FETS: Wy
L-Mormentun

v 2

o u 1

- - VYV, — P =0
ps( 1+TN N 1+1N ) T N
Surface Conditions
2, v=0et N=20

llowing set of partiel differential

(2023)

T Yy (2.2b)

(2.2¢)

(2.24)

+the normal shock and subscripts ¢ and N



_ 2 2_ .2
Ps = -‘-{-i-_l- - -Y_"'—i- in™¢ (2.2e)
u_ = sin ¢ (2.21)
_ 1 (y=1) : :
v, =-Z vy °°S é (2.2g)

The position of the shock will be located by the reguirement thet
the conditions (2.2e) - (2.2z) 2bove be satisfied, In addition totzl mass
concervation tetween the body and the shock is checked by the condition that

b3t

-

N 2 . ’ by
24Tk ) 51n¢=gtpsj%dl+tN)dN . (2.2n)
0

!
\

~y

Tre value ol Ny at which this condition is setisfied can also be used to de-

terxmine the shock position.
3. Methods of Solution of the Governing Eguation

3.1 Series truncetion method

In oréer to start the numerical finite-diiference method it is necessary
TC nave an accurate sclution for the flow near the stagnation-point. The
series truncation zmethed developed and epplied by Van Dyke and co-workers is
ideal for coing this. In the constant densiiy flow past a sphere it is
obvious that the form that one should teke for the truncation is the form of
the constant density inviscid solution of Lighthill (1957). This should be
serticularly accurate in the high Reynolds number range when the boundary-
layer is thin exnd the shock is nearly spherical. The form of the truncation
used by Keo (196h) for the compressible cese is exactly the same as the form
which will be used here. Probstein and Kemp (1960) and other authors have
mede similer truncations in solving the same problem of constant density
flow past a sphere. .

Assume

P(N,s) = Pl(x) + P2(N) in2¢ + e (3.1a)

[#4
~~
>
-
<
e
!

=u, () sin ¢ + oo : ' (3.1b)
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vili,¢; = - vl(l") CosS & +  eee (3.1c)

Substituting these expressions irnto the continuity and momentum

2.2a - ¢) arnd collecting terms we obtain the following set of

(l+TN)le - 2(ul - Tv,) = 0 ' (3.22)

G Ta.v 2P

21 “a "M1a 2
Upeeroo F (P V, + =) u... = —_+ e o — = 0 2o
RBORS (”s L I+t ) v T Ps T T P T 147N (3.20)

5
u. Tujvl
P... - ———t TV.V - — = 2

Pow = P (T Y VVay “ T ) 7O | (3.2¢)

2
Pig = TRV =0 (3.2a)

H
[ 1)

e

o

rne ccrresponding surface andé shock conditiocns

v. =0 et =0 (3.2e)

v, == 1= (3.2£)
'k.l1 =1 . (3.28)

(3.2n)

inzlly, conservetion of mass recquires that

N
S

(1+1Xs)2 = 27p_ I ul(l+rN)dN (3.23)
0




that the first three differential equations (3.2a~c)

o not invelve 2. gnd rerefcre te solved incependent of P After the

c 1.

soluticn is obtained, P. can be determined froz equation (3.24).
The set of ecuetions (3.2z-c) is fourth order. Only two boundery

conditions are given et the body surfece (1i=0). The method of solution is to

guess values for P2 ané u,., a2t the btcdy surfece and then integrate numerically

a8

2

starting from the body surfece. Good initial guesses can be made for P, and
the basis of boundery-leyer theory. Lighthill's (1957) invisecid

constent density solution elong with one term of the 32 ¢$1us series expansion

or he touncary-layer equations near the stagneticn-roint provide a fairly good
izl guess even in the low Reynoclds nuxter cases. The integration is

czrriecd out until the shock condition on u., is satisfied, Values of vl and P2
will trern Te ceterzined. Interpclation using Hewton's methed will allow

‘,_.l

I

. . . .
the snocx conilt

T o
ons on v. &nd P_ to be satisfied after a few trys. It was
found that mess conservation egueticn (3.23) was satisfied to sufficient

Tre rnumericel scheme used was the Runge - Xutta - Gill method on an

I, 3. M. TC40 electronic digital ccmputer. Each integration required less

(0]
11

nute coxmputing time and sufficient accuracy was assured by

Jae

the step size until no change in the results was noted in the first four
¢eclimal places., The numericeal results were cearried out for velues of Res of
500,100, and 49 (1 = 1/30,1/10, ané 1/T). Tre results of these computations
w s

ter slong with the results from the finite-difference methed.

(1

£

(=
)

N

The results are in sgreement with those of Probstein and Xemp (1960).

3.2 Finite-Differernce Method

+]
153
{4
2]
p)
. 2,
o]
n
E-
he)
}.J
e
H
e
0
o
|2
[¢]
|43
b

s to recuce the Navier-Stoxkes eguations

coverning the £1luid motion to a set of parabolic partial differential equations

co that beckward influence is eliminated, and so that integration can be
cerformed by sterting from the stegnation-point and integrating downstrean

2lonz the boldy surface, The first step in doing this is to use the simplified
form of the Navier-Stokes equaticns (2.2a-c) which retain only terms up to
second-orier for large Reynolds nuxber. The significance of these equations
ar as numerical integration is concerned hes been discussed by Davis and

Filizze-Lotz (196k)., [A sizilar set of eguations has been used by Cheng (1963).]
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o mathod oF solution used s siziler to the implicit finite-difference method
ieveloped by Fllzze-lotz and Zlotiner (1982) feor solving the boundery-layer
ecuzticns., Tor devzils of +ra methcd cne is referred to Fllizge-lotz and Blovtner
(1962 end Tevis ané Filgze-Iotz {(158%).

A <Three polini dacxward ciirerence scheme in the ¢ direction is used for

high eccurazcy in evaluating the derivatives in the ¢ direction, [See Davis and
Filizge-Zotz (1964)] In the discussion that Jollows no mention will be nmade

G
of the cdifferences in the X direction since tkhe =etrhod for handling these is

excctly tre szme as the method used by Flligge-Lotz and Blottner (1962) or Davis

Tha flow Tield tetween the body end the shock Is overlaid with a grid

¢l Lincs p&ra;lel +o the ¥ 2nd ¢ coordinate lines respectively, It is assumed
ccastant. rid lines normal
ted with a subscript n.

[frox= the series

ot otos oe KRS

~
[+
~, 3 - - = 4 — A
Snsnoun gquoncities are then et ¢ F o = ¢+

poin = i he
point ¢ ¢m+l in t

e
ot o* h 6 + unear
fizze-Lotz (196%) on the boundary-

layer eguovions. This difference scuation is lineearized TY replacing nonlinear
guantities lixe

P

vy (v - v M= e B lirnzerizing in this manner we eliminate

poote il + L post Ti— ol m+l
<he unknowm quontitiy v . from tze momentum ecuation. The only two remaining

unknowns In theat equation ere then u and P, We further simplify tke equation

(3.3)

difference form in the N direction we now
of u only a2t the station m+l, Tris
quations, however the method

e
ntmver (1957) ané Fllgge-Lotz

ifter w_ .. hos been determined zt 21l points across the shock layer
v ., cen oo determined £-cm the continuity egquetion oy pumerical integrztica.

PRSI -



(3.4)
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Figure 1 Co-ordinate System
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Figure 2 Radial Distance to the Shock at Various Reynolds Numbers
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Figure 3a Velocity Distribution in the Shock-Layer for Re = Lo
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Figure 4d Variation of Skin-Fricticn at Various Reynolds Numbers
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Figure 54 Variation of Surface-Pressure Along the Body Surface

for Various Reynolds Numbers




